Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.19.572339

ABSTRACT

A better understanding of the bifurcation of human B cell differentiation into memory B cells (MBC) and antibody-secreting cells (ASC) and identification of MBC and ASC precursors is crucial to optimize vaccination strategies or block undesired antibody responses. To unravel the dynamics of antigen-induced B cell responses, we compared circulating B cells reactive to SARS-CoV-2 (Spike, RBD and Nucleocapsid) in COVID-19 convalescent individuals to B cells specific to Influenza-HA, RSV-F and TT, induced much longer ago. High-dimensional spectral flow cytometry indicated that the decision point between ASC- and MBC-formation lies in the CD43+CD71+IgG+ Activated B cell compartment, showing properties indicative of recent germinal center activity and recent antigen encounter. Within this Activated B cells compartment, CD86+ B cells exhibited close phenotypical similarity with ASC, while CD86- B cells were closely related to IgG+ MBCs. Additionally, different activation stages of the IgG+ MBC compartment could be further elucidated. The expression of CD73 and CD24, regulators of survival and cellular metabolic quiescence, discerned activated MBCs from resting MBCs. Activated MBCs (CD73-CD24lo) exhibited phenotypical similarities with CD86- IgG+ Activated B cells and were restricted to SARS-CoV-2 specificities, contrasting with the resting MBC compartment (CD73-/CD24hi) that exclusively encompassed antigen-specific B cells established long ago. Overall, these findings identify novel stages for IgG+ MBC and ASC formation and bring us closer in defining the decision point for MBC or ASC differentiation. ImportanceIn this study, researchers aimed to better understand human B cell differentiation and their role in establishing long-lived humoral immunity. Using high-dimensional flow cytometry, they studied B cells reactive to three SARS-CoV-2 antigens in individuals convalescent for COVID-19, and compared their phenotypes to B cells reactive to three distinct protein antigens derived from vaccines or viruses encountered months to decades before. Their findings showed that Activated B cells reflect recent germinal center graduates that may have diverse fates; with some feeding the pool of antibody-secreting cells and others fueling the resting memory B cell compartment. Activated B cells gradually differentiate into resting memory B cells through an activated MBC phase. Increased expression of the cellular metabolic regulators CD73 and CD24 in resting memory B cells distinguishes them from the activated memory B cells phase, and is likely involved in sustaining a durable memory of humoral immunity. These findings are crucial for the development of vaccines that provide lifelong protection and may show potential to define reactive B cells in diseases where the cognate-antigen is still unknown such as in autoimmunity, cancers, or novel viral outbreaks.


Subject(s)
Autoimmune Diseases , COVID-19 , Neoplasms , Lymphoma, B-Cell
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.17.20133793

ABSTRACT

SARS-CoV-2 infections often cause only mild disease that may evoke relatively low antibody titers compared to patients admitted to hospitals. Generally, total antibody bridging assays combine good sensitivity with high selectivity. Therefore, we developed sensitive total antibody bridging assays for detection of SARS-CoV-2 antibodies to the receptor-binding domain (RBD) and nucleocapsid protein (NP), in addition to conventional isotype-specific assays. Antibody kinetics was assessed in PCR-confirmed hospitalized COVID-19 patients (n=41) and three populations of patients with COVID-19 symptoms not requiring hospital admission: PCR-confirmed convalescent plasmapheresis donors (n=182), PCR-confirmed hospital care workers (n=47), and a group of longitudinally sampled symptomatic individuals highly suspect of COVID-19 (n=14). In non-hospitalized patients, the antibody response to RBD is weaker but follows similar kinetics as has been observed in hospitalized patients. Across populations, the RBD bridging assay identified most patients correctly as seropositive. In 11/14 of the COVID-19-suspect cases, seroconversion in the RBD bridging assay could be demonstrated before day 12; NP antibodies emerged less consistently. Furthermore, we demonstrated the feasibility of finger prick sampling for antibody detection against SARS-CoV-2 using these assays. In conclusion, the developed bridging assays reliably detect SARS-CoV-2 antibodies in hospitalized and non-hospitalized patients, and are therefore well-suited to conduct seroprevalence studies.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.18.099507

ABSTRACT

IgG antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc-tail, essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anti-cancer therapeutic antibodies for their elevated binding and killing activity through Fc receptors (Fc{gamma}RIIIa). Here, we report that afucosylated IgG which are of minor abundance in humans ([~]6% of total IgG) are specifically formed against surface epitopes of enveloped viruses after natural infections or immunization with attenuated viruses, while protein subunit immunization does not elicit this low fucose response. This can give beneficial strong responses, but can also go awry, resulting in a cytokine-storm and immune-mediated pathologies. In the case of COVID-19, the critically ill show aggravated afucosylated-IgG responses against the viral spike protein. In contrast, those clearing the infection unaided show higher fucosylation levels of the anti-spike protein IgG. Our findings indicate antibody glycosylation as a potential factor in inflammation and protection in enveloped virus infections including COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL